翻訳と辞書
Words near each other
・ Próspero Morales
・ Próspero París
・ Próspero Penados del Barrio
・ Prószków
・ Próżna Street
・ Pröbsten
・ Prödel
・ Pröll
・ Pröller
・ Prösels Castle
・ Prötzel
・ Prøvestenen
・ Prúdy
・ Prüfening Abbey
・ Prüfening dedicatory inscription
Prüfer domain
・ Prüfer group
・ Prüfer manifold
・ Prüfer rank
・ Prüfer sequence
・ Prüfer theorems
・ Prüfstand VII
・ Prügy
・ Prüll Charterhouse
・ Prüm
・ Prüm (disambiguation)
・ Prüm (river)
・ Prüm (Verbandsgemeinde)
・ Prüm Abbey
・ Prüm Convention


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Prüfer domain : ウィキペディア英語版
Prüfer domain
In mathematics, a Prüfer domain is a type of commutative ring that generalizes Dedekind domains in a non-Noetherian context. These rings possess the nice ideal and module theoretic properties of Dedekind domains, but usually only for finitely generated modules. Prüfer domains are named after the German mathematician Heinz Prüfer.
== Examples ==

The ring of entire functions on the open complex plane C form a Prüfer domain. The ring of integer valued polynomials with rational number coefficients is a Prüfer domain, although the ring Z() of integer polynomials is not, . While every number ring is a Dedekind domain, their union, the ring of algebraic integers, is a Prüfer domain. Just as a Dedekind domain is locally a discrete valuation ring, a Prüfer domain is locally a valuation ring, so that Prüfer domains act as non-noetherian analogues of Dedekind domains. Indeed, a domain that is the direct limit of subrings that are Prüfer domains is a Prüfer domain, .
Many Prüfer domains are also Bézout domains, that is, not only are finitely generated ideals projective, they are even free (that is, principal). For instance the ring of analytic functions on any noncompact Riemann surface is a Bézout domain, , and the ring of algebraic integers is Bézout.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Prüfer domain」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.